Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

3,3'-Dimethyl-1,1'-methylenediimidazolium tetrachlorocobaltate(II)

A. Zeller, ${ }^{\text {a }}$ E. Herdtweck ${ }^{\text {b }}$ and T. Strassner ${ }^{\text {a }}$

${ }^{\text {a }}$ Institut für Organische Chemie, Lehrstuhl für Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, D-01062 Dresden, Germany, and ${ }^{\mathbf{b}}$ Department Chemie, Lehrstuhl für Anorganische Chemie, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching bei München, Germany Correspondence e-mail: eberhardt.herdtweck@ch.tum.de

Received 5 November 2004
Accepted 22 November 2004
Online 18 December 2004
The title compound, $\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4}\right)\left[\mathrm{CoCl}_{4}\right]$, a methylene-bridged bis-imidazolium salt containing a tetrachlorocobaltate anion, is one of the first examples where an alkyl-bridged bisimidazolium compound could be structurally characterized. Short $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts between the imidazolium $\mathrm{C}-\mathrm{H}$ bonds and the Cl atoms of the counter-anion build up a threedimensional network and indicate that the $\mathrm{C}-\mathrm{H}$ bonds are strongly polarized.

Comment

Metal complexes of N-heterocyclic carbenes (NHC) have been shown to be extremely versatile and stable catalysts for a wide range of reactions (Herrmann, 2002). In particular, chelating NHC complexes have been shown to possess enhanced thermal stability, leading to remarkable catalytic properties. For instance, bridged palladium biscarbene complexes have been successfully applied in various catalytic reactions (e.g. C - C coupling reactions; Herrmann et al., 1995,

(I)
1998), and in particular to $\mathrm{C}-\mathrm{H}$ activation (Muehlhofer, Strassner \& Herrmann, 2002). A convenient synthesis of bridged NHC complexes involves the conversion of basic metal precursors, such as palladium(II) acetate, with a bridged imidazolium salt (Herrmann et al., 1998). We report here the structural characterization of a methylene-bridged imidazolium salt with a tetrachlorocobaltate counter-anion, (I) (Fig. 1).

Previously, only a few reports of solid-state structures of imidazolium salts containing transition metal-halide anions have been published (Dullius et al., 1998; Ortwerth et al., 1998; Hasan et al., 1999, 2001), including the related 1-ethyl-3methylimidazolium tetrachlorocobaltate (Hitchcock et al., 1993). They all show short contacts between imidazolium H atoms and the halide atoms of the anion, due to ionic interactions.

For steric reasons, the $\mathrm{N}-\mathrm{CH}-\mathrm{N}$ units in the two imidazole moieties point in opposite directions. The $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 2-\mathrm{C} 1$ (and $\mathrm{N} 3-\mathrm{C} 6$ and $\mathrm{N} 4-\mathrm{C} 6$) bonds are almost identical, which indicates delocalization within these bonds. The dihedral angle between the imidazole rings is 72.96 (9$)^{\circ}$. The Co atom of the counter-anion is surrounded by four Cl^{-}ions in a tetrahedral fashion $[\mathrm{Co}-\mathrm{Cl}=2.2679(7)-2.2911$ (7) $\AA]$. As previously observed for analogous compounds, several short contacts are formed between $\mathrm{C}-\mathrm{H}$ bonds and Cl atoms of the anion. In the case of (I), they are established by imidazolium ring H atoms, as well as by both H atoms of the methylene bridge and one H atom of the methyl group (Table 2). This shows a possible polarization of all $\mathrm{C}-\mathrm{H}$ bonds adjacent to an N atom in an imidazolium salt, and not only of the central $\mathrm{C}-\mathrm{H}$ bond in the $\mathrm{N}-\mathrm{CH}-\mathrm{N}$ unit, which is deprotonated during the formation of metal-NHC complexes.

Figure 1

A perspective view of (I), showing the atom-numbering scheme and the disorder in the C9 methyl group (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A stereoview of the unit cell of (I), showing the hydrogen-bonding network.

As can be seen from Fig. 2 and Table 2, the most acidic H atoms take part in $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts, which build up a bilayer structure parallel to the $a b$ plane. Contacts such as $\mathrm{C} 2-\mathrm{H} 21 \cdots \mathrm{Cl}^{\text {iv }}$ [symmetry code: (iv) $\left.\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z\right]$, which are longer but still within the sum of the relevant van der Waals radii ($2.95 \AA$; Bondi, 1964), connect these layers into a three-dimensional network.

Experimental

The title compound was prepared by reaction of $1,1^{\prime}$-dimethyl- $3,3^{\prime}$ methylenediimidazolium dibromide (Muehlhofer, Strassner, Herdtweck \& Herrmann, 2002) with cobalt(II) chloride hexahydrate in refluxing tetrahydrofuran/ethanol (2:1) for 10 h . The resulting lightblue precipitate was isolated by filtration and washed with tetrahydrofuran (yield 73\%). Elemental analysis revealed a $1: 1$ mixture of the tetrachloro- and corresponding tetrabromocobaltate compounds. Analysis calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{CoN}_{4}$: C $23.10, \mathrm{H}$ 3.02 , N 11.97%; found: C 23.15 , H 3.01, N 11.98%. Crystals of (I) were obtained selectively by slow diffusion of tetrahydrofuran into a solution of the product in dimethyl sulfoxide.

Crystal data

$\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4}\right)\left[\mathrm{CoCl}_{4}\right]$
$M_{r}=378.97$
Monoclinic, $C 2 / c$
$a=15.2885$ (1) A
$b=7.1995$ (1) \AA
$c=28.2539$ (3) \AA
$\beta=94.0770(4)^{\circ}$
$V=3102.02(6) \AA^{3}$
$Z=8$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω rotation scans
Absorption correction: multi-scan,
(DENZO; Nonius, 2001)
$T_{\text {min }}=0.562, T_{\text {max }}=0.916$
32195 measured reflections
$D_{x}=1.623 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3026 reflections
$\theta=1.5-25.2^{\circ}$
$\mu=1.78 \mathrm{~mm}^{-1}$
$T=173$ (1) K
Plate, light blue
$0.38 \times 0.20 \times 0.05 \mathrm{~mm}$

2784 independent reflections
2509 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-18 \rightarrow 18$
$k=-8 \rightarrow 8$
$l=-33 \rightarrow 33$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.067$
$S=1.05$
2784 reflections
166 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co}-\mathrm{Cl} 1$	$2.2805(7)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.461(3)$
$\mathrm{Co}-\mathrm{Cl} 2$	$2.2911(7)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.457(3)$
$\mathrm{Co}-\mathrm{Cl} 3$	$2.2679(7)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.333(3)$
$\mathrm{Co}-\mathrm{Cl} 4$	$2.2746(7)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.380(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.313(3)$	$\mathrm{N} 4-\mathrm{C} 6$	$1.324(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.365(3)$	$\mathrm{N} 4-\mathrm{C} 7$	$1.376(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.467(4)$	$\mathrm{N} 4-\mathrm{C} 9$	$1.468(3)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.327(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.336(4)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.374(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.340(3)$
$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{Cl} 2$	$110.45(2)$	$\mathrm{Cl} 2-\mathrm{Co}-\mathrm{Cl} 3$	$105.49(2)$
$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{Cl} 3$	$113.94(2)$	$\mathrm{Cl} 2-\mathrm{Co}-\mathrm{Cl} 4$	$108.69(2)$
$\mathrm{Cl} 1-\mathrm{Co}-\mathrm{Cl} 4$	$109.15(2)$	$\mathrm{Cl} 3-\mathrm{Co}-\mathrm{Cl} 4$	$108.95(2)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 11 \cdots \mathrm{Cl} 2$	0.95	2.72	$3.606(2)$	155
$\mathrm{C} 2-\mathrm{H} 21 \cdots \mathrm{Cl} 3^{\mathrm{i}}$	0.95	2.91	$3.557(3)$	127
$\mathrm{C} 3-\mathrm{H} 31 \cdots \mathrm{Cl} 4^{\mathrm{i}}$	0.95	2.65	$3.524(3)$	153
$\mathrm{C} 4-\mathrm{H} 42 \cdots \mathrm{Cl} 3^{\mathrm{iii}}$	0.98	2.73	$3.479(3)$	134
$\mathrm{C} 5-\mathrm{H} 51 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.99	2.73	$3.484(2)$	133
$\mathrm{C} 5-\mathrm{H} 52 \cdots \mathrm{Cl} 3$	0.99	2.71	$3.573(3)$	145
$\mathrm{C} 7-\mathrm{H} 71 \cdots \mathrm{Cl} 1^{\mathrm{iv}}$	0.95	2.69	$3.582(2)$	157
$\mathrm{C} 8-\mathrm{H} 81 \cdots \mathrm{Cl} 2$	0.95	2.76	$3.556(3)$	141

Symmetry codes: (i) $-x+\frac{1}{2},+y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $+x-\frac{1}{2},+y+\frac{1}{2}, z$; (iii) $x, y-1, z$; (iv) $-x+\frac{1}{2},-y+\frac{3}{2},-z$.

The C9 methyl group is disordered over two sets of positions, with occupancies of 0.61 (3) and 0.39 (3). Methyl H atoms were located from difference Fourier syntheses and refined as part of rigid rotating groups, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic $\mathrm{C}-\mathrm{H}$ distances of 0.99 and $0.95 \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: KappaCCD Server Software (Nonius, 2001); cell refinement: DENZO (Nonius, 2001); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

We are indebted to Professor W. A. Herrmann for his generous and continuous support of our work. We are grateful for financial support from Süd-Chemie International.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1598). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Dullius, J. E. L., Suarez, P. A. Z., Einloft, S., de Souza, R. F., Dupont, J., Fischer, J. \& De Cian, A. (1998). Organometallics, 17, 815-819.

Hasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Femoni, C., Steiner, A. \& Winterton, N. (2001). Inorg. Chem. 40, 795-800.
Hasan, M., Kozhevnikov, I. V., Siddiqui, M. R. H., Steiner, A. \& Winterton, N. (1999). Inorg. Chem. 38, 5637-5641.

Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.
Herrmann, W. A., Elison, M., Fischer, J., Koecher, C. \& Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371-2374.
Herrmann, W. A., Reisinger, C.-P. \& Spiegler, M. (1998). J. Organomet. Chem. 557, 93-96.
Hitchcock, P. B., Seddon, K. R. \& Welton, T. (1993). J. Chem. Soc. Dalton Trans. pp. 2639-2943.
Muehlhofer, M., Strassner, T., Herdtweck, E. \& Herrmann, W. A. (2002). J. Organomet. Chem. 660, 121-126.
Muehlhofer, M., Strassner, T. \& Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1745-1747.
Nonius (2001). KappaCCD Server Software and DENZO. Nonius BV, Delft, The Netherlands.
Ortwerth, M. F., Wyzlic, M. J. \& Baughman, R. G. (1998). Acta Cryst. C54, 1594-1596.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

